Comparing Human and Algorithm Performance on Estimating Word-Based Semantic Similarity

نویسندگان

  • Nils Batram
  • Markus Krause
  • Paul-Olivier Dehaye
چکیده

Understanding natural language is an inherently complex task for computer algorithms. Crowdsourcing natural language tasks such as semantic similarity is therefore a promising approach. In this paper, we investigate the performance of crowdworkers and compare them to offline contributors as well as to state of the art algorithms. We will illustrate that algorithms do outperform single human contributors but still cannot compete with results gathered from groups of contributors. Furthermore, we will demonstrate that this effect is persistent across different contributor populations. Finally, we give guidelines for easing the challenge of collecting word based semantic similarity data from human contributors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

Robust semantic text similarity using LSA, machine learning, and linguistic resources

Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines Latent Semantic Analysis and machine learning augmented with data from se...

متن کامل

Align, Disambiguate and Walk: A Unified Approach for Measuring Semantic Similarity

Semantic similarity is an essential component of many Natural Language Processing applications. However, prior methods for computing semantic similarity often operate at different levels, e.g., single words or entire documents, which requires adapting the method for each data type. We present a unified approach to semantic similarity that operates at multiple levels, all the way from comparing ...

متن کامل

Automatic Construction of Persian ICT WordNet using Princeton WordNet

WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...

متن کامل

The Semantics of the Word Istikbar (Arrogance) in the Holy Quran based on Syntagmatic Relations(A Case Study of Semantic Proximity and Semantic Contrast)

The word istikbar (arrogance) is one of the key words in the monotheistic system of the Quran, which has found a special status as a special feature of the opponents and adversaries of the call to the truth. Given the prominent role of this issue in the human life system and its provision of corruption and moral deviations, it is necessary to represent the nature of the elements that make up th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014